Printed	Pages	_	4
---------	--------------	---	---

Roll No.

B. E. (Sixth Semester) Examination, 2020

(Old Scheme) and a made (a)

(Civil Engg. Branch)

STRUCTURAL ENGINEERING DESIGN-II

mich note in Time Allowed in Three hours 1 1/1 111

Maximum Marks: 80

relacti / d Minimum Pass Marks : 281 gas in

Note: Attempt all questions. Part (a) is compulsory and attempt any one from rest parts (b) and (c). Use of is IS 800 is permitted.

Unit-I

- 1. (a) What is shape factor? coasd analogentist (a) 2
 - (b) Draw stress-strain curve for mild steel and explain its salient features.

(c)	A simply supported beam of rectangular section and	
	span 'L' carries a concentrated load at the centre.	
	Find at the stage of collapse and what part of the	
	beam is fully elastic.]
	B. I. Island Some II-tinU varmention, 2021	
(a)	Define pitch and gauge.	
	(i) Write advantages and disadvantages of a welded connection.	
	(ii) Write various failures modes of a riveted joint.	1
(c)	Design a tension member of a single T-section 2.75 m long to carry an axial load of 275 kN. Design also the connection of the member of 10 mm thick	
	gusset plate with 18 mm dia. rivets.	1
	for the end of the state of the second of th	-

2.

Unit-III

- 3. (a) Define column bases.
 - (b) A column of 2.75 m effective length consists of two

channels with cover plates as shown in fig. calculate two safe axial compressive load on the column.

Take $fy = 250 \text{ N/mm}^2$.

(c) Design a slab base plate for a steel column ISHB 350 @ 67.4 kg/m, carrying a total load of 900 kN. Bearing strength of concrete may be taken as 4 N/mm²

alt old more than Unit-IV and a dominated

4. (a) Define Laterally Supported beams.

(b) A simply supported beam has an effective span of 7 m carries a Udl of 50 kN/m. Taking $fy = 250 \text{ N/mm}^2$ and $E = 2 \times 10^5 \text{ N/mm}^2$. Design the beam if it is laterally supported.

14 **PTO**

14

2

(c) Redesign the beam of above example (Q. 4 b) if it is laterally unsupported. Each end the beam is restrained against torsion and ends of the compression flanges are fully restrained against lateral bending.

14

Unit-V

5. (a) What is beam column?

2

(b) A column of effective height 6 m is subjected to an axial load of 560 kN and bending moment of 25 kN-m. The section of the column consist of ISMB 600 @ 122.6 kg/m. Check the adequacy of the section. Take C_m = 0.85.

14

(c) A beam-column of effective length of 6 m carries an axial load of 450 kN and equal and moments of 50 kN-m each about the major axis. Design the H-section of the column. Assume that the frame falls under case (b) and the column bends either in single or double curvature.

320613(20)

B. E. (Sixth Semester) Examination, April-May 2020

(New Scheme)

(Civil Engg. Branch)

ENVIRONMENTAL ENGINEERING-I

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions Part (a) of all question is compulsory and carries 2 marks. Attempt any two parts from rest. Each part carries 7 marks. Draw neat sketches wherever required.

- 1. (a) What is LPCD?
 - (b) Explain with neat sketch logistic curve method.

(c) Following data have been noted from census department.

Year	Population	
1940	8000	
1950	12000	
1960	17000	(C) (J)
1970	22500	

Calculate the probable population in the year 1980, 1990.

- (d) Explain with neat sketch river intake well.
- 2. (a) What is blue baby disease?
 - (b) What is turbidity? Explain any two methods of turbidity.
 - (c) Waterworks of a town treat 35 × 10⁶ liters/day. The water is treated by coagulation-sedimentation tanks. The quantity of filter alum is consumed at 20 mg/l of water. If the alkalinity of the raw water is equivalent to 4.5 mg/l of CaCO₃, determine the quantity of filter alum and the quick lime (containing 80% of

- CaO) required per month by the water works. Molecular weights are given as (Ca = 40, C = 12, S = 32, O = 16, Al = 27 and H = 1).
- (d) Describe the Jar test with neat sketch for determining coagulant dosage.
- 3. (a) What is break point chlorination?
 - (b) Explain operational troubles in rapid sand filter.
 - (c) Design five slow sand filter beds from following data for the water works of town of population 75,000 per capita demand = 135 LPCD. Rate of filteration = 210 liters/hr/m². Assume data if required. Average demand out of five units, one is to be kept as stand by and used while repairing other units.
 - (d) Explain chlorine chemistry with neat sketch of break point chlorination.
- 4. (a) Which one of the following tests of water employs

 Erichrome Black T as an indicator:
 - (i) Hardness
 - (ii) Residual chlorine

	1 - 1
	(iii) COD - III of a most as beinger (Dir.)
	(iv) Total solids
	(b) Enlist requirements of Good Distribution System.
	(c) Compare merits and demerits of Ion exchange with
	zeolite process.
	(d) Explain with neat sketch zeolite process of water
	softening, and a solding humanases with specific
5.	
	(i) CO ₂
	(i) NO ₂
	(iii) Hydrocarbons
	(iv) O ₃ when the training of the contract of
	(b) Describe the electronic precipitator and bag filter
	for particulate matter control with neat sketch.
	(c) Describe the effects of air pollution on human.
	(d) Classify different type of air pollution, and the

320614(20)

B. E. (Sixth Semester) Examination 2020

(Old Scheme)

(Civil Engg. Branch)

TRANSPORTATION ENGINEERING-II

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory and carries 2 marks.

Attempt any two parts from (b), (c) and (d) which carry 7 marks each.

Unit-I

1. (a) What are the merits of rail transportation compared to road transportation?

2	1

(b)	What do you mean by gauge of a railway track?	
	Describe the different gauges used in India. What	
	are the problems due to use of different gauges?	7
(c)	Explain the following terms:	7
	(i) Conning of wheel	
	(ii) Length of rail	
	(iii) Rail joints	
	Charles Bounds	
(d)	Explain the creep of rail giving different theories.	
	What are the effects of creep on railway track?	7
	Unit-II	
(a)	What are requirements of good sleepers?	2
(b)	From a main line curve of 5° on a BG track, a	
	branch line of 8° diverges in opposite direction. If	
	the maximum speed permitted on main line is 90	
	kmph, calculate the super elevation and maximum	
	speed on branch line.	7
(c)	Explain the following terms:	7
	(i) Cant deficiency was any same and the	

2.

[3]

		(ii) Transition Curve	
		(iii) Bearing Plates	
	(d)	What are the requirements of good ballast? Using	
		a sleeper density of $(n + 6)$, determine the number	
		of sleepers required for constructing a B G track	
		2210 m long.	,
		Unit-III	
3.	(a)	What is Gathering Lines?	2
	(b)	Explain the following with neat sketches:	
		(i) Diamond crossing	
		(ii) Crossover	
		(iii) Turn triangle	
	(c)	Draw a neat cross-section of switch showing all	
		component parts. Design a turnout with 1 in 12	
5		crossing from the following data:	1
		(i) Gauge = 1.676 m	
		(ii) Heel divergence = 13.3 cm	
		(iii) Straight arm between TNC and TP of crossing curve = 1.346 m	
		Hittleti eminadigrif in enjerna)	

	141	
	(iv) Angle of crossing 34° 45′ 49"	
	(v) Angle of switch = 1° 8′ 0″	
	(d) Describe different methods of interlocking giving	
		7
	Unit-IV	
•	(a) Explain drainage of tunnels.	2
	(b) Describe the "Using Needle Becam" method of tunneling giving neat sketch.	7
	(c) Write notes on the following:	7
	(ii) Ventilation of tunnels (iii) Shapes of tunnels	
	(d) Explain any one method of tunneling in rocks, in details giving neat sketches.	7
	Unit-V	
5.		2
	(b) What do you mean Breakwaters? Describe any two types of breakwaters in details.	7

320614(20)

	[5]	
(c)	Write notes on:	
	(i) Dry dock	
	(ii) Fishing Harbour	
	(iii) Harbour of refuge	
(d)	Explain the following:	
	(i) Jetties	
	(ii) Wharves	
	(iii) Navigational aids	

7.4

Roll No.:

320615(20)

B. E. (Sixth Semester) Examination, April-May 2020

(Old Scheme)

(Civil Engg. Branch)

CONSTRUCTION PLANNING & MANAGEMENT

Time Allowed: Three hours

Maximum Marks: 80

Minimnum Pass Marks: 28

Note: Part (a) of each question is compulsory.

Attempt any two parts from (b), (c) and (d) question in each unit.

Unit-I

- 1. (a) What are the objectives of cost control?
 - (b) What are the different stages and types of planning in construction management?

		[2]	
	(c)	Explain the cost control system.	,
	(d)	What are the advantages and disadvatnages of project planning?	,
2.		Unit-II Define PERT.	1
		Write about the characteristics of CPM/PERT projects.	
		What are the short comings of bar chart? How are these removed?	
	(d)	Find the floats of all activities and the critical path of the network given in figure-1.	7
	Q	8 4 9 10 6 7 5 10	

[3]

3.	(a)	What do you understand by arbitration?	2
	(b)	Discuss the different factors leading to accidents in construction projects.	7
is	(c)	Explain the basic elements of quality with a flow diagram.	7
	(d)	What are the difference between traditional management and TQM?	7
		Unit-IV	
4.	(a)	What is MIS?	2
	(b)	Write notes on:	14
		(i) Economic Analysis	
		(ii) Technical Analysis	
	(c)	Explain the schematic diagram for feasibility study.	14
		Unit-V	
5.	(a)	What do you mean by Hauling?	2
	(b)	What are the factors affecting the selection of construction equipments?	7

Fig. (1)

Law to english of our mild gain. I

Unit-III/III/III matuttilmis ni

(c)	Write a brief note on:		-/
	(i) Scrapers	to a Three per 30 (0)	
	db B		
(d)	Explain the various concret	e production plants used	y-1
	in construction industries.		7
		(i) Economic Snalvi	
	dade yalidesi rifirmyahi	Del. Explain the schematic	
	V-Bull		
	y identing"		
	rs, nilecting the seluction	(ds) :Wint are tim factor	

320631(20)

B. E. (Sixth Semester) Examination, 2020

(Old Scheme)

(Civil Branch)

MODERN CONSTRUCTION MATERIALS

(Elective-I)

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory and carries 2 marks.

Attempt any two parts from b, c and d of each question and carries 7 marks.

Unit-I

1. (a) Enumerate any two types of non-conventional concrete.

- (b) Explain the role of admixtures in manufacturing of HPC.
- (c) What is FRC? Explain the various types of Fibres used in FRC.
- (d) Explain the criteria for selecting the materials for making High Strength concrete.

Unit-II

- 2. (a) What is an alloy? Give example.
 - (b) Write short notes on:
 - (i) High speed steel
 - (ii) Stainless steel
 - (c) What is the difference between ferrous alloys and nonferrous alloys? Explain aluminum alloys briefly.
 - (d) Explain the properties and uses of wrought iron.

Unit-III

3. (a) Define Polyesters.

- (b) Discuss:
 - (i) Creep and relaxation in plastics
 - (ii) Stress strain curve for plastics
- (c) What are the different types of fibre used in Fibre reinforced polymers? Explain brief.
- (d) Explain various Industrial and Civil engineering application of Fibre reinforced polymers.

Unit-IV

- 4. (a) What do you mean by water proofing compound?
 - (b) Write short notes on:
 - (i) Waterproof membrane
 - (ii) Waterproof Asphalt paint
 - (c) Explain the various Facade systems.
 - (b) Write short notes on:
 - (i) Natural Flooring Material
 - (ii) Artificial Flooring Material

[4]

Unit-V

- 5. (a) What do you mean by piezoelectric materials?
 - (b) What are shape memory alloys? How it works? Where shape memory alloys are used?
 - (c) Write short notes on:
 - (i) Magneto-strictive materials
 - (ii) Electro-rheological fluid
 - (d) What are smart materials? Write different applications of smart materials.

Roll No.

320633(20)

B. E. (Sixth Semester) Examination, 2020

(Old Scheme)

(Civil Engg.)

ADVANCED CONCRETE TECHNOLOGY

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: All questions are compulsory with internal choices of two among (b), (c), (d) parts. IS-10262:2009 and IS-456:2000 is allowed.

Unit-I

1. (a) List out the name and abbreviation of Bogue's compounds.

		[3]
	(c)	Explain the step by step procedure of concrete
		mix design by latest IS code method for any
		resumed grade of concrete.
	(d)	What are the sampling and acceptance criteria of
		concrete?
		Unit-IV
4.	(a)	What are the ingredients of fly ash concrete?
	(b)	Explain about polymer concrete.
	(c)	Explain about fiber reinforced concrete.
	(d)	Explain about light weight concrete.
		Unit-V
5.	(a)	Write down the various stages of manufacture of
	()	concrete.
	(b)	Explain in brief about the various method adopted
		for transportation of concrete.

	(b)	Write short notes on Portland pozzolana cement.	7
	(c)	Write short notes on hydration of cement and structure of hydrated cement.	,, ₇
	(d)	Enumerate the test for determination of flakiness index of the aggregate with neat sketch.	7
		Unit-II	
2.	(a)	Draw a representative diagram of true, shear and collapse slumps.	2
	(b)	What are the factors affecting workability of the concrete.	7
	(c)	Write short notes on segregation and bleeding.	7
	(d)	Write short note on shrinkage of the concrete.	7
		Unit-III	
3.	(a)	What do you understand by standard deviation of test results.	2
	(b)	Explain about Schmidt's rebound hammer for non	
	(0)	destructive testing of concrete.	7

320633(20)

[2]

(c) Explain about underwater concreting by Tremie

method.

7

(d) Explain in brief about the curing methods.	
Esplina identificati a ogli compati	
X-tim-1	
In annual to minute and minute about the state of annual contactors.	
Imaged a furthern somewheak insometens in make II	
Explain direct sacressors consisting by France million	

320633(20)

20]

Roll No.

320651(20)

B. E. (Sixth Semester) Examination, April-May 2020

(New Scheme)

(Civil Engg. Branch)

STRUCTURAL ENGINEERING DESIGN-II

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compusiory. Attempt any one part from (b) & (c) of each question. Also draw necessary diagrams. IS 800-2007 and Steel Table is permitted. Assume suitable data if required with relevance.

Unit-I

1. (a) What do you mean by serviceability limit and service criteria?

- (b) Calculate the collapse load for the following cases; 14
 - (i) Simply supported beam with concentrated load at centre
 - (ii) Simply supported beam with eccentric load
- (c) Find the shape factor for the following sections:
 - (i) Square of side *a* with its diagonal parallel to the zz-axis.
 - (ii) Triangular section of base b and height h.

14

2

Unit-II

- 2. (a) What is 'Pitch' in bolt measurement? Draw the suitable diagram.
 - (b) Two Indian standard flats 2 m long & 250 mm × 10 mm size are jointed to make 4 m length. Design a butt joint with the bolts arranged in the diagonal pattern. The bolts are supported to carry a factored tensile force of 375 kN. Also determine the net tensile strength of main plate and cover plate. The steel and bolts are of Fe 410 and 4.6 respectively.

(c) A tie member consisting of an ISA 80 mm × 50 mm × 8 mm (Fe 410 grade steel) is welded to a 12 mm thick gusset plate at site. Design welds to transmit load equal to the design strength of the member.

Unit-III

- 3. (a) What do you mean by slenderness ratio?
 - (b) A tension member 1.2 m long is to resist a dead load of 35 kN and live load of 75 kN. Design the rectangular bar of Fe 410 grade steel. Use 4.6 grade, 20 mm diameter bolt in one line.
 - (c) The 200 × 100 × 15 mm angle shown in the figure is connected with three 20 mm, 4.6 grade bolts.
 Calculate the design tensile strength and comment on the results.

Unit-IV

4.	(a)	What is the difference between lacing and battening element?	2
	(b)	Write the steps for design of axially loaded compression members with suitable discussion.	14
	(c)	Design a built up column consisting of two channel sections placed toe to toe with a clear spacing of 250 mm between them. The column carries an axial load of 1080 kN and is having an effective height of	
		10 m. Design the lacing for the column. Unit-V	14
5.	(a)	What are the possible situations of web buckling of beam member?	2
	(b)	Discuss the design bending strength of ISLB 350@486N/m considering the beam to be both in laterally supported and laterally unsupported condition. The design shear force V is less than the design shear strength. The unsupported length of	
		beam is 4 m. Assuming steel of grade Fe 410.	14

(c) Design a laterally unsupported beam for the following

data:

- (i) effective span = 4 m
- (ii) Max BM = 450 kN-m
- (iii) Max SF = 220 kN,
- (iv) Grade of steel is Fe 410.

Printed	Pages	-4
---------	-------	----

Roll No.:....

320652(20)

B. E. (Sixth Semester) Examination, April-May 2020

(New Scheme)

(Civil Engg. Branch)

GEOTECH ENGINEERING-II

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt only two parts from (b), (c) and (d).

Bo S . Village article Unit-I . I Topic where birth

1. (a) Define infinite and finite slope.

2

(b) Explain stability analysis of infinite slopes for cohesive soil.

	(c) Analyze the slope of infinite extent having slope angle		
		= 25°, is made of clay having $C' = 30 \text{ kN/m}^2$, $\phi' =$	
		20°, $e = 0.65$ and $G_S = 2.7$ under the following	
		conditions:	7
		(i) When the soil is dry,	
		(ii) When water seeps parallel to the surface of the	
		slope; and	
		(iii) When the slope is submerged.	
		GROOTECH ENGINEERING-II	
	(d)	Explain Swedish circle method.	7
		08 : v Unit-II mayentt	
2.	(a)	What is lateral earth pressure?	2
	(b)	A 5 m high rigid retaining wall has to retain a back	
		fill of dry cohesionless soil having the following	
		properties : ϕ = Angle of internal friction = 30°, e =	
		void ratio = 0.74, $G_S = \text{specific gravity} = 2.68$,	
		coefficient of friction = 0.36. Determine the magnitude and point of application of the resultant	J
		thrust, a segula ujunlar to seylam välldats midesti (4)	7

	(c) Explain Poncelet method.	7
	(d) Explain different cases of cohesionless backfill.	7
	Unit-III	
3.	(a) What is soft footing?	2
	(b) Explain plate load test.	7
	(c) The result of two plate load tests for a settlement of	
	25.4 mm are given:	
	Plate diameter Load	
	0·305 m 31 kN	
	0.61 m 65 kN A square column foundation is to be designed to	
	carry a load of 800 kN with an allowable settlement	
	of 25.4 mm. Determine the size of footing by using	
	Housel method.	7
	(d) Write short notes on : (any two)	7
	(i) Rectangular combined footing	
	(ii) Mat footing	
	(iii) Spread footing	
	Unit-IV Alarmay 21 am nativ	

4.	(a) What is	What is well foundation?		
		In a 16 pile group. The pile diameter is 45 cm and center to center spacing of the square group is 1.5 m		
	If <i>C</i> =	50 kN/m ² , determine whether the failure	;	
	would o	occur with the pile acting individually or as a	ı	
	group?	Neglect bearing at the tip of the pile. All	Ĺ	
	piles an	re 10 m long. Take $m = 0.7$ for shear		
	mobilisa	ation around each pile.	7	
	(c) What ar	re the different shape of wells? Discuss the	;	
	characte	eristics of each type.	7	
	(d) Explain	the classification of piles foundation.	7	
		Unit-V DUK to bapi a vrika		
5.	(a) What d	o you mean by CNS soils?	2	
	(b) What an	re preventive measures for expansive soil?	7	
	(c) What d	o you understand by under-seamed piles,		
	explain	with sketch? gntor and the	7	
	(d) What is	an expansive soil? Where is it found in India?	?	
	What ar	e its generally characteristics?	7	

Roll No.

320653(20)

B. E. (Sixth Semester) Examination, April-May 2020

(New Scheme)

(Civil Engg. Branch)

ENVIRONMENTAL ENGINEERING-I

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory carries 02 marks. Attempt any two parts from (b), (c) & (d) carries 7 marks each.

Unit-I may rate of penting

1. (a) Enumerate the 5 factors governing the selection of a particular source of water for a water supply project.

(b)	Explain (i) the various surface sources and under-	
	ground sources. (ii) Type of intake works for a	
	water purification plant.	

The following data shows the variation in population of a town from 1962 to 2012. Estimate the population of the city in the year 2042. Use 3 methods:

Year	Population	
1962	65,000	
1972	73,000	
1982	1,01,500	
1992	1,34,000	
2002	1,67,000	
2012	2,32,000	

- (c) Discuss the merits and demerits of river water sources and ground water source for the water supply scheme for a town. Compare the advantages and disadvantages of ground / water supply and surface water supply schemes.
- (d) From the census data given below, estimate the population of the city for the year 2000 A.D.

Year	Population
1940	22610
1950	13851
1960	36640
1970	45520
1980	53460
1990	63210
2000	70320
2010	76540

determine the suno H-tinU-fter alms and quast limit

- 2. (a) Name 4 coagulants and their chemical formulae.
 - (b) Explain the significance of the following in drinking water:
 - (i) Ammonia (h) ya hali ammonia (h) a hali wa hali ammonia
 - (ii) Chloride content
 - (iii) Methane gas
 - (iv) Coliforms
 - (c) Water works of a town is provided with sedimentation tank of size $40 \times 15 \times 3.5$ m. If 115 ppm suspended solids are present in the water and 60%

are removed in the basin, and the average specific gravity is $2 \cdot 1$, determine the following, if $8 \cdot 5 \times 10^6$ litres of water is treated daily.

- (i) Detention time,
- (ii) Average flow of water through the tank.
- (iii) Deposition of the solids in the tank.
- (iv) Overflow rate.
- (d) Water works of a town treat 25 × 10⁶ l/day. Quantity of filter alum consumed is 21 mg/l. If raw water has an alkalinity of 4.6 mg/l of CaCO₃, determine the amount of filter alum and quick lime (containing 80% of quicklime) required annually at the water works.

Unit-III

- 3. (a) (i) Write the formula for chloramines.
 - (ii) What is the theory of filtration?
 - (b) Explain the Horizontal Gravity Pressure filter with a neat sketch.
 - (c) Explain the role of chlorine as disinfectant. Also name for dechlorination agents.

(d) Explain the function of bleaching powder as disinfectant. It is required to treat 5 × 10⁶ litres of water with 0-4 mg/litre of chlorine. If the disinfectant is in the form of bleach that contains 35% of available chlorine, how many kg of bleaching powder are needed to treat the daily flow of water?

Unit-IV

- 4. (a) What are the deciding factors in determining the storage capacity of service reservoirs?
 - (b) Explain the types of fire hydrants with appropriate sketches.
 - (c) Explain any two methods of removing permanent hardness in water.
 - (d) Design a water softening plant for a water works having the following data:
 - (i) Hardness in the water = 450 mg/litre as CaCO₃
 - (ii) Quantity of water to be treated = 22000 litre/hour
 - (iii) Allowable hardness after treatment in the work = 75 mg/litre as CaCO₃
 - (iv) Ion exchange capacity of the resin to be used in the plant = 10 kg of hardness/cu m

(v) Salt required for regeneration of the resin = 55 kg/cuM of the resin

The water softening plant works for 2 shifts of 8 hours per day. Assume any suitable data where necessary.

Unit-V

- 5. (a) Mention the causes of Air Pollution.
 - (b) Explain the effects on air pollution on plants and livestocks.
 - (c) Describe any two precleaning devices to control air pollution (with neat sketches),
 - (d) What are the various air pollution control methods?

 Describe any 3 major air pollution control equipments.

- Jacov arti ni increti alt parti alt parti in the work -

Hardness in the water = 450 mg/line as CaCO,

Printed	Pages-	3

Roll No.

320654(20)

B. E. (Sixth Semester) Examination, April-May 2020

(New Scheme)

(Civil Engg. Branch)

CONCRETE TECHNOLOGY

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) is compulsory and solve any **two** parts from (b), (c) and (d) in each question.

Unit-I

- (a) Give classification of cement.

 (b) What are the role of gypsum and calcium chloride in cement?

 7
 - (c) Explain in detail hydration of cement. 7

ſ	3	1

		[2]	
	(d)	How aggregates are classified on the basis of size?	7
		Unit-II	
2.	(a)	What do you understand by admixtures?	2
20	(b)	Write short note on - ground granulated blast,	7
		furnace slag (GGBFS).	/
	(c)	What are the effect of mineral admixtures on fresh	
		concrete and hardened concrete.	7
	(d)	Explain in detail the properties of fresh concrete.	7
		Unit-III	
3.	(a)	What do you understand by hardened concrete?	2
	(b)	What do you understand by compressive strength	
		of concrete.	7
	(c)	Discuss the factors affection the variability of	
		concrete and strength. In militalineals with the	7
	(d)	Describe the relation between durability and	
		permeability of concrete.	7
		warmana Unit-IV land an adapted any	

4.	(a)	What do you understand by concrete mix design?	2
	(b)	What are the various factors to be considered in proportion of concrete mix design.	7
	(c)	Explain British method of mix design.	7
	(d)	Explain "Rebound Hammer Test" for measuring the surface hardness of concrete. What are the limitations of this test.	7
		Unit-V	
5.	(a)	Unit-V What do you understand by special concrete?	2
5.	(a) (b)		
5.		What do you understand by special concrete?	
5.	(b)	What do you understand by special concrete? Explain the process of making light weight concrete.	7

	Prin	ted	Pages	_	4
--	------	-----	-------	---	---

Roll No.

320655(20)

B. E. (Sixth Semester) Examination, April-May 2020 (New Scheme)

(Civil Engg. Branch)

CONSTRUCTION PLANNING

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

- Note: (i) Answer all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d) of each question.
 - (ii) The figures in the right hand margin indicate marks.

mod wheeling Unit-I during Comt litera

- 1. (a) What is Planning? It easily stelled and work and I (2) 2
 - (b) What are the methods of scheduling? Explain with the help of a suitable example.

		[2]			[3]
	(c)	What do you mean by LOB technique?	7		(i) Draw the Network for the project
	(d)	What do you understand by Job Layout? What are			(ii) Find the critical path
		the factors affecting the job layout?	7		(iii) Find free float, total float and independent float for each activity
2	(0)	Unit-II	2		(d) Differentiate between CPM and PERT.
۷.		What is slack? What do you mean by PERT? What is its signi-	2		Unit-IV
		ficance?	7	4.	(a) What are Resource allocation?
	(c)	How the probability of completion time for a project			(b) What are the necessary data required for updating?
		can be determined? Write the steps involved in it.	7		Also draw the flowchart for updating.
	(d)	What are the advantages and disadvantages of network analysis over other technique?	7		(c) What do you mean by resource smoothing? What are the steps involved for doing the resource smoothing?
3.		What is a critical path?	2		(d) Explain the term updating. Why is it necessary?
	(b)	What do you mean by earliest event time and latest			Unit-V
		event time? Formulate the equation for them.	7	5.	(a) Define TQM.
	(c)	The following table gives the activities in a Construction Project and other relevant information: Activity 1-2 1-3 2-3 2-4 3-4 4-5	7		(b) Explain the basic elements of quality with a flow diagram.

12

10

320655(20)

25

Duration 20

7

7

7

(c) Explain the use of documentation and quality control
circles in construction quality management.
(d) Describe in detail, the operation and application of
the following types of excavating equipment with
line-diagram showing the basic parts:
(i) Power shovel
(ii) Backhoe
halfor Cymhiaenn a san riceir go tugart mei dh faille (o'r
continger all guilds and booling the step and

Printed	Pages-	4
TIHITOG	1 4500	

Roll No.

320679(20)

B. E. (Sixth Semester) Examination, April-May 2020

(New Scheme)

(Civil Engg. Branch)

WATER POWER ENGINEERING

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: For every question (a) is compulsory which carries 2 marks and attempt any two questions from (b), (c) & (d) which carries 7 marks each.

Unit-I

- 1. (a) Write two factors on which the development of power from flowing water depends.
 - (b) Discuss the strengths, weakness and future prospects of water power in India.
 - (c) Give a brief comparision between hydro, thermal and nuclear power in minimum 7 points.

320679(20)

PTO

ſ.	3	1
н	J	-1

Ц.	_	J

and ground he cannot Unit-IV tong worth I me

	(d)	Discuss the relation of water power and hydrology.	7
		Unit-II	
2.	(a)	What is pondage?	2
30	(b)	Explain the graphical representation for stream flow analysis.	7
	(c)	Discuss the storage capacity of reservoir by Masscurve methods with formula to support the answer.	7
	(d)	What is Runoff and write the factors affecting runoff.	7
		Unit-III and server and a space	
3.	(a)	What is a pumped storage plant?	2
	(b)	Explain the classification of hydropower plant based on design features.	7
	(c)	What is a diversion canal plant? How the head of	
		diversion canal plant can be developed by general procedure. Explain.	7
	(d)	Explain how tidal power is generated and write the advantages and disadvantages of tidal power plant.	7

[2]

4.	(a)	What is a water hammer?	2
	(b)	Write the design criteria for penstockes and write about methods of support to penstocks.	7
	(c)	What do you mean by economical diameter of penstock and explain the methods used to determine the size/diameter of the penstock	•
	(d)	What is a sunge tank? Write the necessity and types of sunge tanks.	-
		Unit-V	
5.	(a)	Write the basic objective of power house planning.	2
	(b)	Write about three main divisions of a hydro-power station structure with a neat sketch to support your answer.	
	(c)	Describe the various locations of underground power stations and write the advantages of the underground power house.	,
		underground power nouse.	

and draw and mention types of layout	for
underground power house.	
determine the bizzydiameter of the personal.	
What is a sange until Write theoretic and	
types of sange tanks.	
V-iinU	
Write the basic objective of power house planning	[8]
Write about tayor main divisions of a lovero-power	
station structure with a near sketch to support your	
Describe the various locations of undergranted	(9)
power stations and write, the advantages of the	
underground power house	
Write the components of underground power hause	(b)

Roll No.

320680(20)

B. E. (Sixth Semester) Examination, April-May 2020

(New Scheme)

(Civil Engineering Branch)

EARTHQUAKE ENGINEERING

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of all the question are compulsory carrying 2 marks while answer any two parts from (b), (c) and (d) carrying 7 marks each.

- 1. (a) Zone factor generally represents:
 - (i) Seismicity of a region
 - (ii) Importance of the structure

- (iii) Size of structure
- (iv) None of these
- (b) Derive the motion equation for the forced undamped vibration.
- (c) Derive the motion eqution for the free damped vibration.
- (d) Explain seismic surface waves with schematic diagrams.
- 2. (a) Generally damping for steel structure is taken as:
 - (i) 5% of critial damping
 - (ii) 2% of critical damping
 - (iii) 10% of critical damping
 - (iv) 20% of critical damping
 - (b) List the four virtues of good earthquake resistance design and describe any one in detail.
 - (c) List and sketch the earthquake resistance feature of ordinary brick masonry structure.
 - (d) Explain earthquake design philosophy for buildings.

- 3. (a) Generally Intensity of earthquke:
 - (i) Increase away from the epicenter
 - (ii) Remains constant
 - (iii) Decreases away from the epicenter
 - (iv) None of these
 - (b) Explain soft storey? Explain how soft storey problems can be eliminated in the existing buildings.
 - (c) Explain how ductile design is helpful for better earthquake resistance.
 - (d) Derive the equation of motion and its solution for forced undamped vibration system.
- **4.** (a) Earthquake is classificed as shallow focus if focal depth is:
 - (i) Less than 70 km
 - (ii) Less than 7 km
 - (iii) Less than 14 km
 - (iv) Less than 700 km
 - (b) Write short note on Liquefaction and remedial measures.

- (c) Describe various strengthening methods foe RCC columns and beams through illustrative sketches.
- (d) Explain the term in detail "Peak Ground Acceleration".
- 5. (a) Maximum intensity scale based on MSK scale is:
 - (i) X was miles I was no like miles I let
 - and (ii) V miles all in benefitible and mer simple as
 - many (iii) XI the ball of many the stage that a subject to the stage of the stage o
 - (iv) XII
 - (b) Discuss the behavior of the following masonry walls in seismic regions:
 - (i) Reinforced Masonry wall
 - (ii) Infill masonry wall
 - (c) Explain failures of masonry structures observed in past earthquakes and how will you improve performance of masonry building.
 - (d) Draw the detailed sketch of:
 - (i) Different ways of beam jacketing as IS code &
 - (ii) Placing of vertical bars and closed ties in columns as per IS code